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ABSTRACT
Light seine fishing, one of the most efficient methods used in modern
fisheries, is performed based on fish phototaxis. In this study, the East
China Sea was selected as the study area, and fishing vessel pixels
(pixels representing light seine fishing vessels) were detected in five
years of Visible Infrared Imaging Radiometer Suite (VIIRS) day/night
band (DNB) imagery according to three indicators: the Spike Median
Index (SMI), Sharpness Index (SI), and Spike Height Index (SHI).
Subsequently, cluster, barycenter, range and direction, and density
analyses were conducted to comprehensively evaluate the spatiotem-
poral patterns of potential light seine fishing areas in the East China
Sea. The following conclusions were drawn from the study: (1) the
number of fishing vessel pixels exhibited obvious monthly character-
istics that are consistent with the fishing moratorium that has been
enforced in this region; (2) at the study area scale, light seine fishing
occurred in one cluster, and the pattern in the interior of the cluster
exhibited spatiotemporal periodicity; (3) the barycenter of the fishing
areas displayed opposing movement trends in the first half and the
second half of the year, and the movements were closely linked to
water temperature changes. In addition, seasonally concentrated fish-
ing areas were observed in winter, spring and summer; (4) the peak
fishing month advanced from September to August beginning in
2014, and the fishing areas displayed a strong tendency in orientation
that was highly consistent with the distribution of the Kuroshio Front
in the East China Sea; and (5) light seine fishing activities were mainly
concentrated in the second half of the year, especially in summer, but
the intensity has declined in recent years. Our results are in good
agreement with the results of other scholars and provide reliable
information concerning where and when light seine fishing occurs.
These results also suggest that VIIRS DNB imagery can be effectively
used to detect light seine fishing areas.
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1. Introduction

Light seine fishing, which is one of the most efficient fishing methods in modern
fisheries, utilizes high-intensity lighting to capture fish based on their phototaxis
(Chen et al. 2013). Because of the wide range of light seine fishing methods, dozens
of tons of fish can be caught at one time, making the method extremely efficient. Light
seine fishing vessel fleets usually include the main light boat, with a total power that can
reach hundreds of kilowatts, and many secondary light boats, with a total power that
can reach 1 kW. When fishing, the high-power lights are arranged on the surface and
underwater to attract the fish. When numerous fish gather around the lights, the fish-
ermen cover the fish with a large net. In the world’s oceans, the high-powered light
emitted by fishing boats is visible in nighttime light imagery (Rodhouse, Elvidge, and
Trathan 2001) and is the main source of marine luminosity (Li and Li 2015). Japan, the
United States, Russia, Norway, Australia, and Peru are all technologically advanced in
terms of light seine fishing. However, with the development of fishery technologies,
including light seine fishing, some areas are gradually suffering from overfishing. For
example, the catch abundance in the East China Sea has obviously declined in recent
years, and there have been reports that the East China Sea is facing a ‘fish shortage’.
These observations indicate that fishery resources are suffering from excessive fishing
(Wang, Zheng, and Cungen 2014). To maintain the sustainability of fishery resources in
the East China Sea, efficient and effective management must be implemented, and
detecting fishing areas could be a good management method.

Spatial patterns are important attributes of fishing areas that can be used to study the
structure of fish populations and the relationships among fish populations (Berkeley
et al. 2004). Currently, fishery research methods mainly involve habitat environment
research and spatiotemporal analysis (Gauthierouellet et al. 2009; Leeney et al. 2008;
Marttila, Kyllönen, and Karjalainen 2016; Van, Griffioen, and van Keeken 2017). Habitat
environment research involves measuring abiotic environmental factors that affect fish
behaviour, including the sea surface temperature (SST), chlorophyll (Chl-a) concentra-
tion, sea surface salinity, water depth, and seabed conditions (Cole and Villacastin 2000;
Maravelias, Reid, and Swartzman 2000; Paulino, Segura, and German 2016; Solanki,
Bhatpuria, and Chauhan 2015; Wang et al. 2010). Because the habitats and environments
of marine fish are typically unified, changes in the habitat environmental index have an
obvious influence on fish in terms of their size, distribution, and habitat level, as well as
on fishery hotspots (Yu et al. 2016; Yasuda, Ohshimo, and Yukami 2014). The Habitat
Suitability Index (HSI) model has been used to simulate the response of organisms to
their surrounding habitat and in species management and fish distribution analyses
(Vinagre et al. 2006; Li et al. 2016). In addition, it has been used to analyse fisheries
(Chang et al. 2012; Chen et al. 2009), with satisfactory results. In this model, SSTs and
Chl-a concentrations represent important environmental factors that allow scholars to
determine fishery changes and predict the locations of fishery hotspots (Kumari and
Raman 2010; Li et al. 2014; Yen et al. 2012; Silva et al. 2016). However, a common
drawback of the above studies is the use of a limited number of environmental factors.
In the complicated conditions of the East China Sea, accurate predictions and simula-
tions remain difficult. Furthermore, the previously published studies required fishing
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data that were not easy to obtain, and the detection and analysis of such data are not
timely, rapid or dynamic.

In recent years, the National Centers for Environmental Information (NCEI) (formerly
the National Geophysical Data Center) have begun to provide digital image data for the
Defense Meteorological Satellite Program’s operational linescan system (DMSP-OLS), and
some scholars have begun to conduct spatiotemporal research on fishery resources
using the DMSP-OLS imagery (Kiyofuji et al. 2001; Choi et al. 2008). Furthermore, many
researchers have utilized nighttime light data to determine the quantity and movement
of light seine fishing vessels (Cho et al. 1999; Kiyofuji and Saitoh 2004; Waluda, Griffiths,
and Rodhouse 2008). Waluda et al. (Waluda et al. 2004) concluded that the distribution
of the fishing vessel fleet derived from nighttime light imagery closely resembled that
derived from ship location data, demonstrating the feasibility of using nighttime light
imagery to study fishery movements. Compared with habitat environment factors,
nighttime light images more directly reflect changes in the fishery, and similar
approaches can be easily extended to other areas because of their global scope
(Rodhouse, Elvidge, and Trathan 2001).

However, DMSP-OLS imagery is of low spatial resolution and often lacks sensor
radiation calibration. These defects have limited the accuracy of predicting and simulat-
ing fisheries. This problem has been alleviated with the launch of a new satellite in 2011
as part of the Suomi National Polar-orbiting Partnership. This satellite was equipped with
the first Visible Infrared Imaging Radiometer Suite (VIIRS). The VIIRS day/night band
(DNB) receives information and can be used to optimize the low-light detection cap-
ability of DMSP-OLS. Compared with DMSP-OLS data, VIIRS DNB data have a smaller
instantaneous field of view, more greyscale pixels and a higher spatial resolution.
Furthermore, the radiation corrections applied to the DNB are consistent with those of
the other VIIRS bands. Recent works have shown that the ability of the VIIRS sensor to
detect lights from fishing vessels is satisfactory. Elvidge et al. (2015) examined the
features of light fishing boats and noted that they are generally spikes. Moreover, they
presented an algorithm for the automatic detection of spikes to extract boat pixels
based on VIIRS DNB data. Similarly, Cozzolino and Lasta (2016) proposed an alternative
algorithm that combined a set of standard techniques for digital image processing
(enhancement, thresholding, and segmentation) to detect lights from ships based on
DNB data. Straka et al. (2015) highlighted the improved ability of the DNB to observe
ship lights by exploring three illustrative case studies. Therefore, this set of data has
great potential for the quantitative monitoring of light seine fishing vessels (Elvidge et
al. 2013; Guo et al. 2017).

In this study, we performed large-scale spatial analyses to quantitatively and qualitatively
evaluate variations in the potential light seine fishing areas in the East China Sea based on
VIIRS DNB images. Specifically, to investigate the characteristics of light seine fishing in the
East China Sea, fishing vessel pixels were detected based on the research of (Elvidge et al.
2015). Additionally, hotspots of light seine fishing areas were detected using cluster analysis.
More specific geographic features of these hotspots were further explored using various
geographic tools, including the grey weighted method, standard deviational ellipse (SDE),
concave hull, and kernel density. The results of this study provide reliable information
concerning where and when light seine fishing occurs and suggest that VIIRS DNB imagery
can be used to effectively detect light seine fishing areas.
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2. Study area and data processing

2.1. Study area

The East China Sea is one of the most important fishing areas in China and encompasses
approximately 0.7 million square kilometres. The average water depth of the sea is 1000
m. This area is located to the east of China’s mainland, south of South Korea, and west of
the Japanese mainland. The Yellow Sea is on the northern side of the East China Sea,
and the South China Sea is on the southern side. The main extent of the East China Sea
lies between [119.13 E, 33.28 N] and [131.08 E, 24.05 N] (Organization, International
Hydrographic 1953).

The East China Sea has a vast continental shelf and flat seabed. The water is of high
quality, with many types of water masses meeting there that provide good breeding,
feeding, and overwintering conditions for various fish species. Thus, high-quality fishing
areas are formed. Light seine fishing is one of the major operating methods in this area,
and the main fishing period is from July to September (Zheng 2008), with a fishing
moratorium on light seine fishing enacted from May 1st to July 1st in recent years
(according to The Ministry of Agriculture of the People’s Republic of China).

2.2. Data sources and processing

2.2.1. Data sources
The data used in this study mainly include VIIRS nighttime light data. The VIIRS on the
S-NPP satellite is part of a joint mission between NASA’s Earth Observing System (EOS)
and the Joint Polar-Orbiting Satellite System (JPSS), which was first launched on 28
October 2011 (Lee et al., 2010; Hillger et al., 2013). In this study, the monthly DNB cloud-
free composites were employed to detect fishing vessels (www.ngdc.noaa.gov/eog/viirs/
download_dnb_composites.html). The data set is produced by calculating the average
radiance of each DNB pixel for the entire month, which is a statistically meaningful
approach for detecting fishing areas. Because fishing areas are relatively stable in certain
periods, monthly images reflect the frequency of fishing vessels in certain areas rather
than the presence of a single vessel. High DNB values correspond to a greater number of
fishing vessels and a greater quantity of fish. This data set has been filtered to exclude
data impacted by stray light, lighting, lunar illumination, and cloud cover. However,
lights from auroras, fires, vessels, and other temporal sources are retained, and such
anomalies are inconsistent with the records in the DMSP-OLS data sets. According to
NOAA’s production description, the VIIRS DNB dataset has two configurations denoted
as ‘vcmcfg’ and ‘vcmslcfg’. The ‘vcmslcfg’ version, which includes stray light-corrected
data, has more data coverage toward the poles but is of reduced quality. Thus, the
‘vcmcfg’ configuration, which is of better quality, was selected as the data source in this
study.

The spatial resolution of the data set was approximately 15 arc seconds, which is
much better than that of the DMSP-OLS data set. The monthly imagery was divided into
six tiles, and each tile was bound by the equator and spanned a longitude of 120°. The
images covering the East China Sea were stored in the ‘tile 3 (75N/060E)’ data set on the
website, and the study period was from March 2012 to December 2016.
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2.2.2. Data processing
When detecting fishing areas using DNB images, regions of interest for selection may
include fires, volcanoes, auroras, vessels, and other temporal features. Pixels with high
DNB radiance from vessels indicate a greater possibility of representing a fishing area
pixel. In this study, the proposed fishing area detection method is based on the research
of Elvidge et al. (Elvidge et al. 2015b). The detailed processing flow is shown in Figure 1.
Three main indicators, including the spike median index (SMI), sharpness index (SI) and
spike height index (SHI), were calculated to identify the real fishing area pixels. Key
threshold values were determined by experiments, and two criteria were used to define
one fishing area pixel: (1) SMI> 0.035, SI> 0.4, and 0.75< SHI< 0.995 or (2) SMI> 0.035,
SI> 0.4, SHI> 0.995, and DNB radiance <1000. The detailed processes are listed below.

(1) Data preprocessing
The study data were extracted from the monthly data set of the East China Sea. To

avoid the impacts of light from the mainland and islands, a 20-km buffer zone was
configured. A logarithmic transformation of the DNB values was applied to enhance the
contrast among features. Thus, the data set consisted of pixels with log10(DNB) values.

(2) Spike median index (SMI)
The SMI was calculated as follows:

SMI ¼ Pi;j � Pi;j
0 (1)

where Pi;j represents the log10(DNB) of a pixel in row i and column j and Pi;j
0
represents

the grey value of a pixel in row i and column j processed with a 3 × 3 pixel median filter.

Figure 1. Processing flow chart for VIIRS boat detection under low lunar illuminance conditions.
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We selected 0.035 as the threshold of the SMI. Thus, pixels with SMI values greater than
0.035 were considered to represent a spike.

(3) Sharpness index (SI)
To differentiate obscured pixels, we used the image SI to evaluate the original image.

Elvidge et al. used the S3 algorithm in many experiments (Elvidge et al. 2015a; Vu, Phan,
and Chandler 2012) and distinguished between fuzzy and clear SMI detection results
with a threshold of 0.4. Similarly, clear detection results with SI values greater than 0.4
were obtained in this study.

(4) Spike height index (SHI)
To distinguish between high-energy particles, weak detection results and strong

detection results (fishing boats), Elvidge et al. applied the SHI (Elvidge et al. 2015a).

SHI ¼ ðPi;j � Pavg adjÞ
Pi;j

(2)

Pavg adj ¼ min Phorizontal; Pverticalf g (3)

Phorizontal ¼ Pi;j�1 þ Pi;jþ1

2
; Pvertical ¼ Pi�1;j þ Piþ1;j

2
(4)

where Pi;j represents the grey value of a pixel in row i and in column j, Pavg adjrepresents
the average radiance of two adjacent pixels. The pixels with SHI values greater than 0.75
were retained.

3. Methods

Based on the fishing vessel detection process proposed in the previous section, a series
of fishing area data sets was extracted from April 2012 to December 2016 and used to
conduct a spatiotemporal pattern analysis of the fishing areas in the East China Sea.
Table 1 shows the statistical count of fishing vessel pixels detected from each monthly
DNB data set.

A significance test (Farris et al., 1995) was conducted to verify the results for fishing
vessel pixel detection based on Table 1. Each column represents a sample from the
population that indicates the actual fishing vessel pixel count. If significant differences

Table 1. Fishing vessel pixel count from 2012 to 2016.

Year Fishing Vessel Pixel Count

Month 2012 2013 2014 2015 2016

1 N/A 438 331 388 388
2 N/A 157 184 75 172
3 N/A 315 273 242 196
4 408 456 202 195 175
5 473 365 304 414 385
6 382 541 377 542 580
7 3467 4112 3283 1819 2956
8 2862 3544 3119 2068 2485
9 1568 3113 1286 2355 1406
10 1076 1096 1212 1337 1131
11 1072 966 1256 813 595
12 856 826 314 619 719
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are not observed among the populations from which the samples were obtained, then
the results are more likely to be true. In this study, the Friedman test (Sheldon, Fillyaw,
and Thompson 2010), which is a non-parametric statistical test that provides a measure
of difference between paired groups by rank, was used. The null hypothesis of the test is
that ‘significant differences would occur across the population’. To confirm the accuracy
of the result of fishing vessel detection, the null hypothesis must be accepted based on
the samples. In general, without drastic changes in natural factors or government
policies for fishery management, fishing activities should proceed normally. Therefore,
the fishing vessel pixel patterns are likely consistent without significant differences. We
used R to execute the Friedman test, and the data in Table 1 were divided into two data
sets because the test requires a matching number of data sets. The first data set
consisted of the fishing vessel pixel count from January to December between 2013
and 2016, and the second consisted of the pixel count from April to December between
2012 and 2016.

3.1. Cluster pattern of fishing areas at multiple spatial scales

In the first part of the spatiotemporal analysis, cluster pattern analysis was applied to
identify hotspots of light seine fishing areas. As stated above, a large number of fishing
vessel pixels represents a high probability that the area is a fishing area. Therefore, the
sea areas where lots of fishing vessel pixels gather could be fishing areas. To extract the
spatial pattern of these hotspots, the unweighted Ripley’s K-Function was used. Ripley’s
K-Function is a type of estimator used to describe the correlations among objects in a
given field and can describe the characteristics of point processes at many distance
scales (Dixon and Philip 2006). This indicator was used to determine the overall dis-
tribution trend (clustered or dispersed) of light seine fishing areas in the East China Sea.

Ripley’s K-Function can be described as follows:

LðdÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A
Pn
i¼1

Pn
j¼1;j�i

ki;j

πnðn� 1Þ

vuuut
(5)

where d is the distance, n is equal to the total number of features, A represents the total
area of the features and ki,j is a weight. If there is no edge correction, then the weight
will equal one when the distance between i and j is less than d and will equal zero
otherwise.

According to the results of Ripley’s K-Function, the fishing areas in all months were
not dispersed and instead distributed as clusters. Therefore, cluster analysis using the
DBSCAN (density-based spatial clustering of applications with noise) method (Idrissi and
Alaoui 2016) was conducted to obtain the clustering pattern. The DBSCAN algorithm
was developed to identify arbitrarily shaped clusters based on the spatial data density,
and a cluster can be recognized if the spatial point density of a region exceeds a certain
threshold. To use this approach, two main variables must be clarified (Ester et al., 1996):
(1) � (eps), which defines the distance threshold of a neighbouring region, and (2)
minPts, the minimum number of points required to form a dense region. To identify
the optimal � value, the k-nearest neighbourhood distance matrix was used, and the
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fishing vessel pixels were extracted as point features in a vector model. Then, the
function kNN distplot in the DBSCAN package was used to obtain the k-distance pattern
and identify the optimal � value. To identify the optimal minPts value, the number of
points within the � radius of each point in the data set was calculated. Then, minPts was
obtained from the mathematical expectation of all the calculated points. According to
our experiments for all months, the optimal � value was 30 km, and the optimal minPts
value was 10. One of the months (April 2012) was selected to show the optimal value of
�, which is indicated by the inflection point along the k-distance curve (Figure 2).

3.2. Barycenter of fishing areas

The specific geographic features of the identified fishing hotspots were further explored.
The geometric barycenter of each fishing area (April 2012 to December 2016) was
calculated by the grey weighted method (Lehodey et al., 1997), in which each point
was assigned a weight based on the associated grey value. The barycenter reflects the
general movement of the potential light seine fishing areas in the East China Sea.

�X ¼
Pn
i¼1

ðPi � xiÞPn
i¼1

Pi

; �Y ¼
Pn
i¼1

ðPi � yiÞPn
i¼1

Pi

(6)

where �X and �Y represent the longitude and latitude of the barycenter of the fishing
ground in a certain month, respectively; xi and yi represent the longitude and latitude of
the ith fishing vessel pixel; Pi represents the grey value of the ith fishing vessel pixel; and
n is the total number of fishing vessel pixels in each month.

Figure 2. Plot of the k-nearest neighbourhood distance for fishing vessel pixels in April 2012.
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3.3. Fishing area ranges and directions

The SDE method is a classical algorithm used to measure the direction and distribution
of a point data set and was first proposed by Lefever (Lefever 1926) in 1926, and it was
used to determine the main trend in orientation of fishing areas and the significance of
the trend. It is assumed that the fishing vessel pixels obeyed a normal distribution;
therefore, the SDE with two standard deviations was used to reduce the impact of
abnormal pixels. Approximately 95.4% of the fishing vessel pixels were distributed in the
range of twice the standard deviation (Pixels beyond this range were considered
exceptions). In addition, to calculate the area of the fisheries, a polygon was created
via a concave hull method based on the pixels, and the area of the polygon is
considered the fishery area after the removal of abnormal pixels.

The SDE direction is calculated as follows:

tan θ ¼
ðPn
i¼1

exi2�Pn
i¼1

eyi2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPn
i¼1

exi2�Pn
i¼1

eyi2Þ2 þ 4ðPn
i¼1

exieyiÞ2
s

2
Pn
i¼1

exieyi (7)

where θ is the angle from the north direction to the long axis of the ellipse, indicating
the main trend in the orientation of the fishing areas, exi and eyi represent the deviation of
xy coordinates from the average centre of fishing area, n is the total number of fishing
vessel pixels in a certain month and i represents the sequence number of the pixel.

Then, ellipticity of the SDE was calculated as follows to reflect the significance of the
trend in orientation of the fishing area:

O ¼ a� b
a

(8)

where O is the ellipticity of SDE, a is the length of the major semi axis, b is the length of
the minor semi axis.

A concave hull is a polygon that more precisely illustrates the area occupied by point
data versus that based on a convex hull. In general, the concave hull area of a point data
set is smaller than that of a convex hull. To obtain a more accurate fishery area, the
isolated fishing vessel pixels were not considered when constructing the concave hull,
and subpolygons were generated according to the cluster pattern of fishing vessel pixels
to avoid inflated area values. Figure 3 shows the concave hulls of the data set in April
and July 2012.

3.4. Fishing vessel pixel density

The density of fishing areas was explored because it can effectively reflect the internal
differences among fishing hotspots. We used the kernel density tool in ArcGIS 10.2 to
analyse the density distribution of fishing vessel pixels. This tool calculates the density of
a feature based on its surrounding neighbourhood and can be applied to both points
and lines. We used the tool with points in this study. In contrast to the ordinary density
analysis tool, the points that fall into the search area have different weights. Specifically,
the points near the search centre are assigned high weights, and the distribution of
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results is relatively smooth. A continuous surface can typically be generated based on
the points.

The kernel function, which is the core function of the kernel density tool, is based on
the four-core function described by Silverman (B.W. Silverman 1986).

K2ðxÞ ¼ 3π�1ð1� xTxÞ2; ðif xTx<1Þ
0; ðotherwiseÞ

�
(9)

where T is the mathematical operator that represents the transpose of matrix.

4. Results and discussion

4.1. Fishing vessel detection and verification

The fishing vessel pixels from April 2012 to December 2016 were extracted (Figure 4).
We counted all fishing vessel pixels in the results, which are presented in Table 1. The
Friedman test results of the first data set (January to December between 2013 and 2016)
are as follows: chi-squared = 4.36, df = 3, and p = 0.225 > 0.05. The null hypothesis was
accepted, and significant differences were not observed among the populations. The
Friedman test results of the second data set (April to December between 2012 and 2016)
are as follows: chi-square = 3.93, df = 3, and p = 0.268 > 0.05. The null hypothesis was
again accepted, and significant differences were not observed among the populations.
These results indicate that the detection results are of satisfactory accuracy.

The change in the number of fishing vessel pixels is shown in Figure 5. Regularity can
be observed over time. Notably, fewer pixels and slight fluctuations appear between
January and June, and a sudden dramatic increase is observed from June to July. Then,
the number of detected pixels gradually decreases and returns to a lower level at the
end of the year.

As noted in section 3, a fishing moratorium on light seine fishing offshore in China
has been enacted annually from May 1st to July 1st in recent years. During this time, no

Figure 3. Concave hull of the fishing vessel pixels in April and July of 2012.
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light seine fishing boats are allowed to leave the port. The end of the fishing moratorium
on July 1st contributes to the dramatic increase in light seine fishing, as confirmed by the
trend of the quantity of vessel pixels.

4.2. Cluster pattern analysis of the fishing areas

The cluster pattern reflects the distribution of light seine fishing hotspots (Figure 6). A
similar pattern with an initial concentration and then decentralization is observed from
2012–2016.

Specifically, the light seine fishing vessels are dispersed without large clusters from
February to April. From the end of April to the beginning of May, the population begins
to increase with the beginning of spawning activities. The fish affected by the Kuroshio
Front move northward with the emergence of some nascent fishing areas. From May to
June, the scale of light seine fishing is limited because of the fishing moratorium. In July
and August, the population begins to exhibit explosive growth after two months of
fishing moratorium, with a high concentration of light seine fishing vessels in the area.

Figure 4a. Fishing vessel detection results from (a) January to June and (b) July to December
between 2012 and 2016 (yellow points represent the detected fishing vessel pixels).
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Large-scale fishing areas are distributed in the northeast to southwest direction in the
East China Sea. In September, the population of fish decreases significantly after two
months of high-intensity fishing, and large-scale fishing areas become scattered and
form many small-scale fisheries in the southwestern and northeastern East China Sea.
The scattered fishing areas also display a continuous decline in scale. This trend con-
tinues until April of the following year, forming almost random fishing areas that
combine again in May.

An interannual analysis shows that the scale of the fishing areas has been continually
declining in recent years. The decline reflects a reduction in fishery resources in the East
China Sea, which should draw the attention of relevant resource management
departments.

4.3. Variations in the fishing area barycenter

The latitude and longitude of the fishing area barycenter are counted separately
(Figure 7). The barycenter is relatively evenly distributed between 123.5°E ~ 127.5°E
and 27°N ~ 30.5°N. The overall trends of latitude and longitude are similar: first

Figure 4b. (Continued.)
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decreasing and then increasing, reaching a minimum in the middle of the year, and
returning to the original level at the end of the year. This pattern suggests that the
barycenter moves from the northeast to southwest and then northeast during the year.
To further analyse this pattern, the barycenter data were averaged in each month
(January to December), and the five-year average (2012–2016) barycenter was obtained
(Figure 8).

The fishing area barycenter displays opposite movement trends in the first half
and second half of the year. In latitude, the barycenter moved from 29.30°N in
January to 28.07°N in June and then to 29.43°N in December (from east to west to
east), with a fluctuation of approximately 1.3°. In longitude, the barycenter moved
from 126.37°E in January to 124.49°E in June and then to 126.15°E in December (from
north to south to north), with a fluctuation of approximately 1.8°. The movement of
fishing area barycenter can be closely linked with changes in the SST (SST results can
be downloaded from https://oceancolor.gsfc.nasa.gov/). Taking the year 2013 as an
example, in spring and summer (March to August), as the water temperature
increased, the fishing vessel groups gradually move southwest. In contrast, in
autumn and winter (September to February) when the water temperature decreases,
the fishing vessel groups gradually move in the opposite direction (northeast). This
phenomenon reflects the impacts of water temperature changes on light seine
fishing and the distribution of fisheries.

In addition, obvious seasonal agglomeration can be observed in the fishing areas. The
barycenter is centrally distributed in the winter (approximately 29.4°N, 126.5°E), spring
(approximately 28.6°N, 125.3°E) and summer (approximately 28.3°N, 124.6°E). However,
in autumn (September to November), the barycenter moves northeast, with a variation
close to 1° in both longitude and latitude.

4.4. Range and direction analysis of fishing areas

The concave hull area was applied to represent the range of the light seine fishing area
in each month. In general, the area expands first and then decreases. Additionally, it is

Figure 5. Monthly variation in the fishing vessel pixel count.
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Figure 6. Cluster pattern variations from January to December in 2012–2016.
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striking that the peak month has advanced from September to August since 2014;
specifically, the peak area value in Figure 9a appears in September in 2012 and 2013
and in August between 2014 and 2016, accompanied by an obvious decrease in the
peak value. Both trends reflect the increased shortage of fishery resources.

The direction of the SDE was applied to represent the trend in the orientation of the
fishing areas (Figure 9b). Taking the north direction as the starting axis, nearly all
azimuths are distributed between 30° and 50°, and the oblateness of the SDE is generally
greater than 0.6 (reaching 0.8). This finding suggests that the distribution of fishing areas
exhibits a strong tendency in orientation. This trend may be correlated with marine
factors. In fact, this type of distribution is highly consistent with the direction of the
Kuroshio Front in the East China Sea, which is a well-known warm oceanic western
boundary current that can affect the temperature and salinity of the ocean. In the past, a
significant relationship has been observed between the Kuroshio Front and the

Figure 7. Monthly change in the latitude and longitude of the fishing area barycenter.

Figure 8. Monthly five-year average fishing area barycenter.
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hydrographic and fishery conditions in the East China Sea (Lie and Cho 2002), which
indicates a close connection between the Kuroshio Front and fishing areas in this study
region.

4.5. Density analysis of fishing areas

The density analysis results reflect the target areas and optimal times for light seine
fishing (Figure 10). Over the year, the density of light seine fishing is highest in summer
(July and August). Compared with the fishing activity in other seasons, fishing in summer
occurs over larger areas and in more concentrated clusters. Furthermore, the fishing
intensity in the second half of the year is much greater than that in the first half. These
fishing patterns are consistent with the main period of light seine fishing in this area
(Zheng 2008).

Interannual density analysis reveals that the fishing intensity decreases annually
during the study period. The decline may be correlated with the Chinese government’s
regulations on fishing in the East China Sea. The fishing moratorium on offshore light
seine fishing in China was adjusted to the period from May 1st to August 1st in 2017
(May 1st to July 1st before 2017) (www.moa.gov.cn/govpublic/YYJ/201701/t20170120_
5460478.htm), which reflects a more stringent fishing policy.

In addition, the concave hulls were stacked (obtained in section 3.3) to count the
number of layers in each pixel, which reflects the fishing frequency in the East
China Sea over time (Figure 11). The results show that high-frequency areas are
continuously distributed, with many located in the southern portion of the study
area.

5. Conclusions

In this study, VIIRS DNB imagery data were used to identify the spatiotemporal patterns
of potential light seine fishing areas in the East China Sea. The fishing vessel pixels were
detected as described by Elvidge et al. Then, the spatiotemporal patterns of the fishing
areas were explored from four perspectives: cluster pattern analysis at multiple spatial
scales, the calculation of the fishing area barycenter, analyses of range and direction,
and an analysis of the fishing area density. Compared with previous studies of fishing

Figure 9. Monthly variation in the (a) concave hull area and (b) SDE direction.
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areas, nighttime light images provide a more effective approach for the large-scale
analysis of spatiotemporal pattern changes. Moreover, this technique can be expanded
to similar studies in other areas because of the global scope of the imagery. This study
provides reliable information concerning where and when light seine fishing occurs. In
addition, the results demonstrate that VIIRS DNB imagery can be effectively used to
detect light seine fishing areas and has the potential to play a role in establishing long-
term fishery resource regulations and combating illegal, unregulated, and unreported
(IUU) fishing activities.

Although the results of the spatiotemporal analysis in this study are in good agreement
with the results of other scholars, only a single band of the VIIRS images was applied.
Therefore, the information obtained here is limited, and the boat identification results may
also contain errors. Moreover, different types of light fishing vessels cannot be distinguished.
In the future, determining how to improve the identification accuracy of fishing vessels and
even distinguish between different types of vessels are worth exploring.

Figure 10. Results of the density analysis from January to December between 2012 and 2016.
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